

YPSW Section 41st Annual Meeting, Jan 21-22, 2016

Health Hazard Banding: The Newest Chapter in the Exposure Assessment Strategy Manual

Donna S. Heidel, CIH, FAIHA™ Industrial Hygiene Practice Leader

Move Forward with Confidence

The World of Occupational Health Risk Evaluation

Exposure Guideline Disharmony?

n-Hexane Exposure Guidelines

Type of Limit	Value (ppm)
DNEL – Derived No Effect Level	4.7
IOELV - Indicative Occupational Exposure Limit Values	20
TLV [®] — Threshold Limit Value	50
AEGL2 – Acute Exposure Guideline Level (2)	3300 (30-min to 8-hr)
IDLH – Immediately Dangerous to Life and Health	1100
RFC – Inhalation Reference Concentration	0.2

Andrew Maier, PhD, DABT, CIH

AIHA Strategic Direction and Content Priorities

- ► Vision: Elimination of Workplace Illnesses
- ► Mission: Creating Knowledge to Protect Worker Health
- Content Priorities:
 - Exposure Banding/OEL Process
 - Sensor Technologies
 - Emerging Markets/Global IH/OH Standard of Care

- IH Value Strategy/Business Case Development
- Changing Workforce Demographics/Environment
- Big Data/Data Management and Interpretation

AIHA A Strategy for Assessing and Managing Occupational Exposures; 4th Edition

Enables Hierarchy of Controls

Management Systems Approach

Establish policy

- Policy addresses chemical agents without authoritative OELs
- Example: Columbia University <u>http://www.ehs.columbia.edu/SafeUseOfChemicals.html</u>

"...to protect laboratory workers from adverse health effect ...regardless of what hazardous substances are used."

Allocate resources

- OEB Tier 1; IH
- OEB Tiers 2 & 3; IH with specialized expertise, occupational toxicologist
- Financial resources
- Identify hazards and exposure limits or bands
 - Ex. NIOSH OEB Guidance Document (pending) and AIHA BoK
- Assess potential risk from exposure

Mapping the Differences in OELs

Andrew Maier, PhD, DABT, CIH

Need for a Systematic Process

No Authoritative OEL or OEB Sampling and Analytical

Exposures

Ability to Assess

Authoritative OEL **Sampling and Analytical** Methods to Detect < 0.1 x OEL

Current IH Exposure Assessment Body of Knowledge

No OEL No OEB **No Sampling Method** No Analytical Method

Methods Available

Authoritative OEL or OEB No Analytical Method to **Quantify Exposures to < 50%** of the OEL

Semi-quantitative or **Surrogate Methods Available**

Knowledge of Occupational Health Hazard

Selecting the Appropriate Controls

Management Systems Approach

- Eliminate and substitute hazards
 - Tier 1 provides a rapid and defensible method
 - GHS Hazard Categories that prompt "D" and "E" OEBs indicate the potential for irreversible health effects at relatively low doses

Hazard Class	Hazard Category			
Acute Toxicity	1	2	3	4
Skin Corrosion/Irritation	1A	1B	1C	2
Serious Eye Damage/ Eye Irritation	1	2A	2B	
Respiratory or Skin Sensitization	1			
Germ Cell Mutagenicity	1A	1B	2	
Carcinogenicity	1A	1B	2	
Reproductive Toxicity	1A	1B	2	Lactation
Specific Target Organ Toxicity (STOT) – Repeated Exposure	1	2		

Qualitative Example: dimethyl dicarbonate (CAS 4525-33-1)

Acute toxicity via inhalation (Acute Toxicity 2)

Corrosive to skin (Skin Corr. 1B)

OEB: Band E

No authoritative OEL

No sampling or analytical method

No sensor technology

- ✓ Consider substitution
- ✓ Closed transfers
- ✓ Ventilation known to control exposures to \leq 0.1 PPM
- ✓ Skin and eye protection, RPE
- ✓ Access to safety shower and eyewash
- Life cycle assessment; from receipt to ultimate disposal

Including ALL Chemical Hazards into the Design Process

Stage	Activities
Conceptual Design	Establish IH goals, identify IH hazards and associated regulations and standards. Identify relevant OELs and/or agents of concern.
Preliminary Design	Eliminate hazards, if possible. Substitute less hazardous agents / processes, and establish risk minimization targets for remaining hazards (OELs and OEBs). Qualitative exposure assessment; develop control alternatives.
Detailed Design	Select controls. Conduct Process Hazard Reviews.
Procurement	Develop specifications and include in procurements. Develop test protocols for factory acceptance testing and commissioning.
Construction	Construction site safety and contractor safety.
Commissioning	Factory acceptance and operational qualification testing. SOPs. Exposure assessments. Mgmt. of residual risks.
Start Up and Occupancy	Education. Management of change. Modification of SOPs.

Management Systems Approach

Check

B U R E A U VERITAS

- Exposure control verification
 - Historical data
 - Modeling
 - Surrogates must consider
 - Physical Form
 - Morphology
 - Limit of Detection

- Particle Size
- Hygroscopy
- Flowability

• Exposure control verification using surrogates must replicate the work environment, including work practices and PPE, that the workers will use

Management Systems Approach

Act

- Make appropriate changes based on new hazard info
- Recent examples
 - Pesticides
 - Fumigants
 - Carbon nanotubes and nanofibers
 - Nano silver
 - Beryllium
 - Silica
 - Flavorings

Business Value of Worker Health

- Estimated costs of \$250B*/year
 - The medical costs associated with occupational disease and injury: \$67B
 - Productivity costs \$183B, including current and future lost earnings and fringe benefits

*Leigh, J. P. (2011), Economic Burden of Occupational Injury and Illness in the United States. Milbank Quarterly, 89: 728–772.

- An Integrated Health and Safety Index has been proposed
 - Translates the impact of employer health and safety programs into business value for the investment community

Ultimately, the value of a company can be seen as the health of its workforce Dr. Robert McLellan, co-author of Integrated Health and Safety model

Leadership + Management Economic Absence + Disability Management Integrated Health + **Productivity** Integrated **Dow Jones** Health Environmental Sustainability Healthy Workers and Safety Healthy Environment Indices Index Engagement in Prevention Social + Wellness Value-based Benefits Corporate Social Responsibility Source: 2015 American College of Occupational and Environmental Medicine

Integrated Health and Safety Index

The World of Occupational Health Risk Evaluation

Move Forward with Confidence