Occupational Health and Safety in the Design and Construction of Projects

John Gambatese, PhD, PE(CA)
School of Civil and Construction Engineering
Oregon State University

AIHA Yuma Pacific Southwest Section
43rd Annual Meeting
San Diego, CA
January 17-19, 2018
The Importance of Design

“Things alter for the wrong spontaneously, if they be not altered for the better designedly.”

Francis Bacon (1561-1626), British author, statesman, philosopher, and scientist
A Focus on Ethics

• National Society of Professional Engineers (NSPE) Code of Ethics:
 • “Engineers shall hold paramount the safety, health, and welfare of the public.”

• American Board of Industrial Hygiene (ABIH) Code of Ethics:
 • “First and foremost, ABIH certificants and candidates give priority to health and safety interests related to the protection of people……”

[Image with NSPE and ABIH logos]
Supporting Research

• **22%** of 226 injuries that occurred from 2000-2002 in Oregon, WA, and CA related to design\(^1\)
• **42%** of 224 fatalities in US between 1990-2003 related to design\(^1\)
• **60%** of fatal accidents resulted in part from decisions made before site work began\(^2\)
• **63%** of all fatalities and injuries could be attributed to design decisions or lack of planning\(^3\)

\(^2\) European Foundation for the Improvement of Living and Working Conditions
\(^3\) NSW WorkCover, *CHAIR Safety in Design Tool*, 2001
Hierarchy of Controls

- **Elimination**
 - Eliminate the hazard during design

- **Substitution**
 - Substitute a less-hazardous material or form during design

- **Engineering Controls**
 - "Design-in" engineering controls, incorporate warning systems

- **Administrative Controls**
 - Well-designed work methods & organization

- **PPE**
 - Available, effective, easy to use
Sustainable Development

- USGBC – Prevention through Design (PtD) LEED Pilot Credit, IPpc93
 - Safety Design Review
 - Safety Constructability Review

Source: http://sustainablesafetyandhealth.org/scsh-overview/
Benefits of Prevention through Design (PtD) Implementation

- Reduced site hazards
 - Fewer worker injuries and fatalities
- Increased productivity
- Increased quality
- Fewer delays due to accidents
- Designer-constructors collaboration
- Improved operations/maint. H&S
- Reduced workers’ comp. premiums
- Marketing, recognition
A Driver of Innovation

Expected Impacts

Survey of design and construction professionals in the UK:

- Change as a result of implementing PtD (% of respondents)

<table>
<thead>
<tr>
<th>Item</th>
<th>Decrease</th>
<th>No Change</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design cost (n=35)</td>
<td>6%</td>
<td>46%</td>
<td>49%</td>
</tr>
<tr>
<td>Construction cost (n=38)</td>
<td>34%</td>
<td>24%</td>
<td>42%</td>
</tr>
<tr>
<td>Design duration (n=37)</td>
<td>8%</td>
<td>57%</td>
<td>35%</td>
</tr>
<tr>
<td>Construction duration (n=39)</td>
<td>38%</td>
<td>44%</td>
<td>18%</td>
</tr>
<tr>
<td>Construction quality (n=39)</td>
<td>8%</td>
<td>28%</td>
<td>64%</td>
</tr>
<tr>
<td>Construction worker productivity (n=30)</td>
<td>13%</td>
<td>33%</td>
<td>53%</td>
</tr>
<tr>
<td>Construction worker health & safety (n=45)</td>
<td>4%</td>
<td>9%</td>
<td>87%</td>
</tr>
<tr>
<td>End-user health and safety (n=42)</td>
<td>5%</td>
<td>10%</td>
<td>86%</td>
</tr>
</tbody>
</table>

Source: Final Report, NIOSH PtD in the UK study, May 2013.
Inhibitors of PtD Implementation

• No or minimal designer education and training in safety
 • Site safety and designing for safety
• Difficult to assess risks during design
• Contractual separation of design and construction
• Cost/time required to implement PtD
• Fear of increased liability
• Competing priorities (e.g., safety vs. cost/schedule)
Enablers of PtD Implementation

- A committed owner/client
- Positive safety culture
- Design engineer experience and training
 - Construction, maintenance, and safety
- Integrated project delivery methods
- Design/construction visualization tools
PtD Initiatives

- NIOSH PtD National Initiative
- OSHA Construction Alliance Roundtable
- ANSI/ASSE PtD Standard Z590.3-2011
- U.K.: Construction (Design and Management) Regulations
- Spain: Royal Decree 1627/1997, “Minimum provisions for health and safety at construction sites”
- Other EU countries, Australia, South Africa, and more
Steps to Implementing PtD in Practice

Source:
Steps to Implementing PtD in Practice

1. Education, training, and tools
 - OHS in architecture/engineering education
 - Professional continuing education classes
 - OHS in professional licensure requirements
 - Visualization and work flow tools
Steps to Implementing PtD in Practice

1. Right place, right time, right resources
 - OHS review in project development process
 - Integrated project delivery methods
 - Co-locating design and construction staff
 - Supported by owner/client (resources)
• OHS is a design criterion
 – Part of standard design practice
 – Incorporated into design codes
 – Contractually prescribed by owner/client
 – Required by legislation
OHS is a high priority

- Authorization to modify the design for OHS
- Designing out the hazard is first choice
- OHS given high priority relative to other project criteria
Test your knowledge...

What is the average rank of priority given to each of the following criteria by architects and design engineers (1 = highest ranking; 6 = lowest ranking)?

A. Quality
B. End-user safety
C. Cost
D. Schedule
E. Aesthetics
F. Construction Safety

What is the average rank of priority given to each of the following criteria by architects and design engineers (1 = highest ranking; 6 = lowest ranking)?

A. Quality
B. End-user safety
C. Cost
D. Schedule
E. Aesthetics
F. Construction Safety

Steps to Implementing PtD in Practice

1. Designing for OHS has value
 - Lifecycle savings outweigh costs, and economically feasible for designers
 - Improvements in OHS, quality, productivity
 - Morally and ethically responsible
 - Desired by owners/clients (priority)
Steps to Implementing PtD in Practice

- Designed for construction safety and health
 - Construction site hazards eliminated/reduced
 - Improvements in OHS, quality, productivity
 - Improvements in maintenance H&S
 - Design and construction integration and collaboration
Planning and Design Process

Concept
- Owner
- AE
- GC/CM

- Establish PtD process
- Identify PtD checklists, other tools
- Select primary materials
- Identify opportunities for prefab./modular.

30% Design
- Owner, AE, GC/CM
- Key trade contractors
- Key equip. manufact.

- Finalize design aspects to facilitate prefabrication
- Review design checklists
- Perform preliminary hazard analysis
- Apply multi-attribute decision tools
- Select secondary materials

60% Design
- Owner, AE, GC/CM
- Key trade contractors

- Use design checklists
- Draft erection plans
- Communicate critical hazards on plans and specs
- Identify needed anchorage points, work platforms

90% Design
- Owner, AE, GC/CM
- All trade contractors

- Review safety constructability of all plans, specs
- Identify safety expectations in all contract docs
- Identify safety parameters for subcontracts

© T. Michael Toole and John Gambatese 2011
Design Development

- Establish design for safety expectations
- Include construction and operation perspective
- Identify design for safety process and tools

Source: Hecker et al., 2005
Example PtD Program

- The Haskell Co.: “Safety Alert System” (SAS)
 - Designer safety education, training, awareness
 - Safety reviews during design
 - All disciplines
 - Identify hazards
 - Incorporate safety suggestions into design
 - Safety symbols on design drawings
 - Alert constructors to safety hazards
 - Include reference to related OSHA standards
Example: BHP Billiton PtD Initiative

- PtD staff embedded in procurement and design
- Communication and training
- PtD in technical specifications

Courtesy of BHP Billiton
Design Risk Assessment

Which is safer to build? How much safer?

Steel-framed building

Concrete-framed building

www.constructionsliderule.org
Example: Steel Design

- Bechtel’s steel design process
- PtD elements:
 - Temporary access platforms
 - Lifting lugs
 - Shop installed vertical brace ladders
 - Bolt-on column ladders and work platforms

Graphic courtesy of Bechtel Corp.
Example: Steel Design

Temporary ladder, platform, and safety line

Photos courtesy of Bechtel Corp.
Example: Steel Design

Modular platforms

Photos courtesy of Bechtel Corp.
Example: Steel Design

Brace lifting clips and rungs

Photos courtesy of Bechtel Corp.
Example: Anchorage Points

Roof anchors

Panel and guardrail anchor points
Example: Roofs and Perimeters

Skylights

Upper story windows

Parapet walls
Example: Walking Surfaces

- Walkable ceiling space for worker access above clean room
Example: Prefabrication

Steel stairs

Concrete wall panels

Concrete segmented bridge
Example: Modularization

- Modular service risers
Example: The Erector Friendly Column

- National Institute of Steel Detailers (NISD) and Steel Erectors Association of America
Example: The Erector Friendly Column

- Holes in columns at 21” and 42” for guardrail cables
- Column splices and connections at reasonable heights above floor
- Seats for beam connections

Source: AISC Educator ppt

Example: The Erector Friendly Column
Example: Equipment Design

Grinding without engineering controls

Grinding using a vacuum dust collector
Example: Equipment Design

Jackhammer use without engineering controls

Jackhammer use with water spray to control dust

OSHA
Example: Equipment Design

Cutting concrete block without engineering controls

Cutting concrete block with water applied to the saw blade
Example: Coatings

- Non-isocyanate
- Low volatile organic compounds (VOC)
Example: Poka-yoke (mistake-proofing)
Example: Buffers
Example: Reliability
Occupational Health and Safety in the Design and Construction of Projects

• Questions? Comments?

• For more information:
 john.gambatese@oregonstate.edu