CUMULATIVE RISK ASSESSMENT: INTEGRATION OF THE OCCUPATIONAL ENVIRONMENT

R. Todd Niemeier, M.Sc., CIH

Centers for Disease Control and Prevention (CDC)
National Institute for Occupational Safety and Health (NIOSH)
Education and Information Division (EID)
Cincinnati, Ohio 45226

American Industrial Hygiene Association
Yuma Pacific-Southwest Section
44th Annual Meeting, Jan 23-25, 2019
San Diego, CA
The findings and conclusions in this presentation have not been formally disseminated by the National Institute for Occupational Safety and Health (NIOSH) and should not be construed to represent any agency determination or policy.
Wong et al. [2003] investigated the potential interaction of vinyl chloride monomer (VCM) exposure and Hepatitis B infection (HBsAg)- outcome measure—liver cancer

Case control study of 4096 male workers from 6 polyvinyl chloride polymerization plants in Taiwan

- 18 patients with liver cancer / 68 control subjects matched for age and specific plant employment were selected
- HBsAg-Negative subjects with low exposures (no tank cleaning) were used as reference population

Results

- HBsAg-Negative with high exposure- 4.0-fold greater risk of liver cancer (95% CI=0.2-69.1)
- HBsAg-Positive with low exposure- 25.7-fold greater risk of liver cancer (95% CI= 2.9-229.4)
- HBsAG-Positive with high exposure- 396-fold greater risk of liver cancer (95% CI= 22.6-∞)
Conclusions- Potential Interaction between HPsAG- Positive status and high VCM exposure on liver cancer

Limitation:
- Small number of subjects (with liver cancer)
- Hepatocellular carcinoma/angiosarcoma not specifically diagnosed
National Academies of Science
Definition

“The combination of risks posed by aggregate exposure to multiple agents or stressors in which aggregate exposure is exposure by all routes and pathways and from all sources of each given agent or stressor.”

NRC 2009
Environmental Protection Agency (EPA)

Definition

“An analysis, characterization, and possible quantification of the combined risks to human health or the environment from multiple agents or stressors.”
CONCEPTUAL MODEL OF CUMULATIVE RISK

- Personal Risk Factors (PRF)
- Environmental Risk Factors (ERF)

Cumulative Risk
ENVIRONMENTAL RISK FACTORS (ERF)

- Setting
 - Residential
 - Community
 - Environment
- Agents
 - Chemical
 - Biological
 - Radiation
 - Physical
 - Psychological
- Pathway
 - Air
 - Soil
 - Water
 - Food
- Route
 - Inhalation
 - Ingestion
 - Dermal

Cumulative Risk

PRF

PRF

Cumulative Risk

ERF
PERSONAL RISK FACTORS (PRF)

- **Biology**
 - Genetics
 - Age
 - Sex
 - Race
 - Previous disease state

- **Lifestyle choices**
 - Exercise
 - Diet
 - Smoking
 - Drinking
 - Hobbies

- **Other**
 - Psychological
 - Socioeconomic status
 - Geographic region
 - Cultural components

- **Cumulative Risk**

- **ERF**
Current CRA approaches focus primarily on:

- Aggregate exposures to chemical classes with common toxic mechanisms
 - Pesticides – Neurotoxicity
 - Phthalates
- Environmental, community and residential issues
 - Environmental justice
- EPA and academics

What about the workplace and occupational risk factors (ORF)?

- Call for the occupational environment to be considered in CRAs [Fox et al. 2018, Lentz et al. 2015, Pandalai et al. 2013, Williams et al. 2012, Schulte et al. 2012]
MODIFIED CRA MODEL

- **Agents**
 - Chemical
 - Biological
 - Radiation
 - Physical
 - Psychological

- **Pathway**
 - Air
 - Surfaces

- **Route**
 - Inhalation
 - Dermal
 - Ocular

Cumulative Risk
INTEGRATING CRA & OCCUPATIONAL RISK ASSESSMENT

- ORF impact health & well-being
- Non-ORF influence workers
- Knowledge of the interaction of risk factors may foster enhanced management of occupational illness and injury [Schulte et al. 2012]
Evidence of additive effect of methylene chloride and carbon monoxide exposure on carboxyhemoglobin levels

NIOSH Criteria Document on Methylene Chloride [1976]:

\[\frac{C(\text{CO})}{L(\text{CO})} + \frac{C(\text{CH}_2\text{Cl}_2)}{L(\text{CH}_2\text{Cl}_2)} \leq 1 \]

where:

- \(C(\text{CO}) \) = the TWA exposure concentration of CO
- \(L(\text{CO}) \) = the recommended TWA exposure
- limit of CO = 35 ppm [135]
- \(C(\text{CH}_2\text{Cl}_2) \) = the TWA exposure concentration of methylene chloride
- \(L(\text{CH}_2\text{Cl}_2) \) = the recommended TWA exposure
- limit of methylene chloride = 75 ppm
Table V-3

TWA EXPOSURE LIMITS FOR METHYLENE CHLORIDE WHEN CO IS JOINTLY PRESENT IN THE OCCUPATIONAL ENVIRONMENT.

<table>
<thead>
<tr>
<th>CO TWA</th>
<th>CH₂Cｌ₂ , ppm</th>
<th>TWA</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td></td>
<td>75</td>
<td>37.5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>54</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>43</td>
<td>21.5</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>21</td>
<td>10.5</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>11</td>
<td>5.5</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
NOISE AND OTOTOXICANTS

- Combined effects of noise and ototoxicants may be additive or greater than additive [OSHA/NIOSH 2018]
 - “Several studies have suggested that some ototoxic chemicals, such as certain solvents, might exacerbate noise-induced hearing loss even though the noise level is below OSHA's Permissible Exposure Limit (PEL).”
 - Indicates the importance of recognizing and controlling dermal exposures
 - Highlights the importance of impulse noise

- ACGIH [2018] proposed to add “OTO” notations to chemicals that cause hearing loss alone or in combination with noise exposure (even below 85 dBA)
 - Based on both human and animal data
 - One chemical identified so far in 2018 Notice of Intended Changes list (styrene)
 - Other chemicals listed in text (CO, HCN, lead, ethylbenzene, styrene, toluene, xylene, solvent mixtures)
NOISE AND OTOTOXICANTS

<table>
<thead>
<tr>
<th>Substance Class</th>
<th>Chemicals</th>
</tr>
</thead>
</table>
| **Pharmaceuticals**
Ototoxicity at therapeutic doses is limited | Aminoglycosidic antibiotics (e.g. streptomycin, gentamycin) and some other antibiotics (e.g. tetracyclines), Loop diuretics* (e.g. furosemide, ethacrynic acid)
Certain analgesics* and antipyretics* (salicylates, quinine, chloroquine)
Certain antineoplastic agents (e.g. cisplatin, carboplatin, bleomycin). |
| **Solvents** | Carbon disulfide, n-hexane, toluene, p-xylene, ethylbenzene, n-propylbenzene, styrene and methylstyrene, trichloroethylene. |
| **Asphyxiants** | Carbon monoxide, hydrogen cyanide and its salts, tobacco smoke |
| **Nitriles** | 3-Butenenitrile, cis-2-pentenenitrile, acrylonitrile, cis-crotononitrile, 3,3’-iminodipropionitrile. |
| **Metals and Compounds** | Mercury compounds, germanium dioxide, organic tin compounds, lead. |

[OSHA/NIOSH 2018]
OCCUPATIONAL AND PERSONAL RISK FACTORS

A1. A chronic disease and an ORF are independent risks for an adverse health outcome

Occupational exposure to dioxin

Ischemic heart disease

Hypertension

Dioxin may be a risk for ischemic heart disease.
Hypertension is risk for ischemia.
Combined impact may be significant for the development of disease.

1.4 Obesity impacts one outcome, an ORF impacts another, and the two outcomes can be associated with each other

Obesity

Sleep apnea

Chemical exposure

Non-alcoholic fatty liver disease

[Schulte et al. 2012, Pandalai et al. 2013]
Method

Three tiered approach to identify scientific literature with multiple stressors resulting in a clinical health outcome

Tier 1: Screening search strategy

Database search term in PubMed:
Epidemiology or human AND interaction or effect modification AND occupational disease or exposure

Tier 2: Independent screening by expert panel

Inclusion Criteria:
1. English language studies
2. Health effect outcome identified
3. One stressor identified as occupational environment

Exclusion Criteria:
1. Population epidemiology
2. Studies with genetic risk factors
3. Animal studies, reviews, case studies, and other non-research based literature

Tier 3: Review of full reference by expert panel
Results

- Selected literature spans from 1980-2017
- Most studies evaluated 2 exposures (Workplace and Other)
 - Two studies assessed 3 workplace and personal domains
 - The dominant 2nd exposure evaluated was “smoking”
 - Other 2nd exposures were varied and included stressors such as noise, age, saturated fat intake, gender, psychosocial factors
 - Very few studies identified biological exposures, pre-existing health conditions, or job strain/work stress
- Represents various occupations in both manufacturing and service industries
EXPLORING CUMULATIVE EXPOSURES IN THE WORKPLACE

Discussion

- Many different cumulative exposures impacting many types of workplaces and workers exist
- Workplace wellbeing efforts may be helpful (NIOSH Total Worker Health and smoking cessation programs)
- Cumulative risks increase health risks, and are necessary to understand dose- and concentration-response relationships
- Include both modifiable and non-modifiable behaviors and characteristics

Limitations

- Strict adverse clinical outcome criterion largely limited results
- Exclusion of population-based studies identifying occupational risk factors post-hoc
How do we begin to address CRA in the workplace?

Several issues at play
- Complexity of workplace exposures
- Temporal issues
- Lack of easily accessible data
- “Outside the fenceline” exposures

EPA [2007] has identified 3 initiating factors that could lead to conducting a CRA:
- Multiple pollutant sources or releases
- Elevated concentrations from environmental monitoring or biomonitoring of chemicals
- Increased population illness in a community
- **Gatekeeper step [Moretto et al. 2017]**
 - Starting assumption: interactions are unlikely at doses/exposure levels at or below no effect levels
 - Assume dose additivity for chemicals with similar modes of action [Boobis 2011]
 - If a chemical is above health based guidance level, control exposures first before beginning a CRA

- **Problem formulation [Solomon et al. 2016]**
 - Purpose, scope, and depth of the assessment
 - Analytical approach and available resources
 - CRAs focus should be stressors or risk factors that have risk management options available [NRC 2009]
TOWARDS AN OCCUPATIONAL FRAMEWORK

Possible approaches:

- Should occupational focused CRAs be on stressors “inside the fence line”/employer’s purview?
- Should non-occupational stressors or risk factors only be considered if they are the same as those in workplace or lead to same health effect of concern?
- Should personal risk factors also be considered as they may have important implications from a risk communication/management perspective?
- Stressor based (prospective) vs. health-based (retrospective) designs
- Question: Do the “health-based guidance levels” in the occupational environment (OELs) provide a good starting point for the “gatekeeper step”?
 - Many PELs are out date [OSHA 2018]
 - NIOSH recently updated it’s Carcinogen policy to reduce residual risk from 1/1000 to 1/10000 [NIOSH 2016]
 - Other OELs may be outdated- important to evaluate critical health effects of chemicals
WHERE DO WE GO FROM HERE?

Existing Tools
- Mixie (chemical stressor-based approach) [2019]
- Wiser (health effects-based approach) [2019]
- EU Online Interactive Risk Assessment (OiRA) [2019]
- OSHA/NIOSH Preventing Hearing Loss Caused by Chemical (Ototoxicity) and Noise Exposure [2019]
- ACGIH OTO Notations [2018]- Styrene (NIC)
- CRA Training [Society of Risk Analysis meeting 2016, 2017]
FUTURE NEEDS

- Occupational or industry based inventories [Williams 2018] Chemical /non-chemical/personal risk factor linked to combined health effects
 - Conceptual models
 - Multi-stressor exposure databases
 - Occupational exposure factors
- Use of Occupational Exposure Banding?
<table>
<thead>
<tr>
<th>Health Effects</th>
<th>Chemical Exposures</th>
<th>Other Stressors</th>
<th>Personal Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory</td>
<td>Ammonia, chlorine gas, formaldehyde, isocyanates, cadmium, PM, ozone</td>
<td>Biologicals</td>
<td>Age, obesity, smoking</td>
</tr>
<tr>
<td>Heart abnormalities</td>
<td>CO, CO2, hydrogen cyanide, H2S, methylene chloride</td>
<td>Heat, shift work</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>Lead</td>
<td>Stress, shift work</td>
<td>Smoking, obesity</td>
</tr>
<tr>
<td>Hearing loss</td>
<td>Solvents, lead, CO</td>
<td>Noise</td>
<td>Age</td>
</tr>
<tr>
<td>Visual impairment</td>
<td>Methanol</td>
<td>Non-ionizing radiation, poor lighting, stress</td>
<td>Age, alcohol, diabetes</td>
</tr>
<tr>
<td>Skin effects</td>
<td>Hydrogen fluoride, PCB/TCDD, tin, cobalt, aluminum</td>
<td>Solar radiation, Non-ionizing radiation</td>
<td>Smoking</td>
</tr>
<tr>
<td>Neurotoxicity</td>
<td>Solvents, metals</td>
<td>Biologicals, stress</td>
<td>Age</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>Asbestos, silica, metals</td>
<td>Biologicals, ionizing radiation</td>
<td>Smoking</td>
</tr>
</tbody>
</table>

[Williams 2018]
NIOSH Cumulative Risk Assessment Mini-Symposium (recorded 7/31/18)

<table>
<thead>
<tr>
<th>Presenter</th>
<th>Affiliation</th>
<th>Topic</th>
<th>Time Slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. John Howard</td>
<td>NIOSH</td>
<td>Introductory Remarks</td>
<td>9:00 A.M.—9:10 A.M.</td>
</tr>
<tr>
<td>Dr. Glenn Rice</td>
<td>US EPA</td>
<td>Cumulative Risk Assessment: Asking the Right Questions</td>
<td>9:10 A.M.—9:35 A.M.</td>
</tr>
<tr>
<td>Mr. Frank Heart</td>
<td>NIOSH</td>
<td>NORA Mixed Exposures: 20th Year Progress Report</td>
<td>9:35 A.M.—10:00 A.M.</td>
</tr>
<tr>
<td>Dr. Sudha Pandalai & Dr. Paul Schulte</td>
<td>NIOSH</td>
<td>The interrelationship of occupational and personal risk factors: building block in cumulative risk assessment</td>
<td>10:00 A.M.—10:25 A.M.</td>
</tr>
<tr>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>10:25 A.M.—10:35 A.M.</td>
</tr>
<tr>
<td>Dr. Jane Clougherty</td>
<td>Drexel University</td>
<td>Merging Chemical and Psychosocial risk factors in CRA</td>
<td>10:35 A.M.—11:00 A.M.</td>
</tr>
<tr>
<td>Dr. Thais Morata</td>
<td>NIOSH</td>
<td>Addressing Physical Stressors in Cumulative Risk Assessment: Noise as an example</td>
<td>11:00 A.M.—11:25 A.M.</td>
</tr>
<tr>
<td>Dr. Pamela Williams</td>
<td>E Risk Sciences, LLP</td>
<td>CRA in Practice: What can NIOSH and the IH Community do to help?</td>
<td>11:25 A.M.—11:50 A.M.</td>
</tr>
<tr>
<td>Speaker Forum Discussion</td>
<td></td>
<td></td>
<td>11:50 A.M.—12:30 P.M.</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

- Jane Clougherty, Drexel University
- Scott Dotson, Cardno Chemrisk
- Mary Fox, Johns Hopkins University
- Naomi Hudson, NIOSH
- Brenda Jones, NIOSH
- T.J. Lentz, NIOSH
- Thais Morata, NIOSH
- Sudha Pandalai, NIOSH
- Glenn Rice, EPA
- Alan Rossner, Clarkson University
- Miriam Siegel, NIOSH
- Paul Schulte, NIOSH
- Pamela Williams, E Risk Sciences, LLC
- Vanessa Williams, NIOSH
REFERENCES

- ACGIH (2018) TLVs and BEIs based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH, American Conference of Governmental Industrial Hygienists.
REFERENCES

- Williams 2018. CRA in Practice: What the IH Community and NIOSH Can Do To Help. Presented at the NIOSH Cumulative Risk Assessment Mini-Symposium, Cincinnati, OH (7/31/18)
QUESTIONS?

R. Todd Niemeier, M.Sc., CIH
rbn4@cdc.gov