

Controversies in the Interpretation of PFAS and PFOA Toxicity-Chapter 1"

Michael L. Dourson, PhD., DABT, FATS, FSRA

Toxicology Excellence for Risk Assessment (TERA)

Cincinnati, Ohio USA

PFOA The "Forever" Chemical

- Perfluorooctanoate (PFOA) and its sulfonic acid (PFOS) are fatty acids. Our bodies think they can be used for energy---Not!
- Development of a safe PFOA dose has been going on since 2002 (e.g., *Dark Waters*) with values ranging from 4000 ng/kg-day to a now much lower, and recent, value of 0.0015 ng/kg-day (USEPA, 2021).
- Drinking Water Inspectorate (UK, 2021), Health Canada (2018), the EFSA (2020), FSANZ (2017) and US ATSDR (2018) also have PFOA safe doses; values differ by over 100,000-fold.
- One principal reason for disparity is improved underlying database; equally important is the complexity of data.

EPA Versus Other PFOA Health Advisories

Conundrum of the PFOA Human ¹/₂ Life

- Human PFOA half-lives differ significantly in human observational studies from 1.2 to 14.9 years (Dourson and Gadagbui, 2021).
- Alliance for Risk Assessment (*ARA*) Steering Committee initiated a collaboration in Spring of 2021 to explore these differences.
- Advisory Committee formed in Spring of 2021 by ARA Steering Committee
 - Harvey Clewell, Ramboll, Global
 - Tony Cox, Cox Associates, USA
 - Michael Dourson, TERA, USA
 - Shannon Ethridge, Internation. Assoc. of Plumb. & Mech. Officials, USA
 - Ali Hamade, Oregon Health Authority, USA
 - Ravi Naidu, CRC CARE, Australia
 - Nitin Verma, Chitkara University, India
- Work finished Spring of 2022 with paper by Campbell et al. (2022). See: <u>https://www.tera.org/Alliance%20for%20Risk/Projects/pfoahumanhalflife.html</u>

Half-Life Small Group Participants

- Jerry Campbell, Ramboll, Global
- Harvey Clewell, Ramboll, Global
- Norman Forsberg, Arcadis, USA
- Bernard Gadagbui, TERA, USA
- ^o Tiago Severo Peixe, State University of Londrina, Parana, Brazil
- Ali Hamade, Oregon Health Authority, USA
- Ravi Naidu, CRC CARE, Australia
- Nathan Pechacek, Ecolabs, USA
- Robyn Prueitt, Gradient, USA
- Andrew Prussia, ATSDR, USA
- ^o Mahesh Rachamalla, University of Saskatchewan, Canada
- Lorenz Rhomberg, Gradient, USA
- ^o James Smith, Navy and Marine Corps Public Health Center, USA
- Nitin Verma, Chitkara University, India

Impacts of Identified Issues?

Selection of a subset of studies <u>Unmonitored PFOA</u> in human observational studies could *inflate* values of estimated PFOA half-life.

• Half-lives biased high

PFOA half-life values based on <u>branched chain</u> isomers could *deflate* linear chain PFOA half-life.

Half-lives biased low

Collaboration identified three studies with the fewest issues.

Studies Identified as Having the Fewest Issues for Unmonitored PFOA exposures and/or Isomer Uncertainties

Study population	Half-life (years)	Comments	Uncertainty	
Elcombe et al. (2013) Clinical trial (n = 3)	Arithmetic Mean (AM) 0.5	 Based on analysis of Elcombe et al. (2013) by Dourson and Gadagbui, 2020. Patients received a single dose with 6 week follow up; serum levels <renal li="" resorption.<=""> </renal>	 High dose in Elcombe et al. (2013) obviates need to monitor other PFOA. Single isomer studied. If serum levels above saturation then this may raise half life. 	
Xu et al. (2020): Employees exposed via water (n = 17)	Geometric Mean (GM) 1.5	 Unlikely alternate exposures. 5-month follow up. Exposures not greatly above background. 	 Other unmonitored exposures possible & may lower half-life. Branched PFOA isomers were studied but not reported. 	
Zhang et al. (2013): Healthy Chinese volunteers (n = 86)	GM = 1.7 young females GM = 1.2 males and older females) Central GM = 1.3 Median = 1.8	 Discussion of background or ongoing exposure not needed since half-lives based on renal clearance. Study authors note that half- lives should be considered as upper limits since not all elimination routes were studied. 	 No uncertainty in exposures; based on renal clearance. Unmonitored elimination by other routes was not studied. Multiple isomers were studied. 	

Key findings/Conclusion

- The central tendency of the human PFOA half-life is likely less than 2 years.
- Zhang *et al.*, 2013 is a clearance study; its single best value appears to be the geometric mean of 1.3 years, but authors consider this to be an upper limit.
- Unmonitored PFOA exposures and branched PFOA isomers identified as issues.
- **<u>Conclusion</u>**: PFOA is not as "forever" as some folks think.

The Steering Committee of the Alliance for Risk Assessment (*ARA*)

Steps for Estimating a PFOA/PFOS Safe Dose

- Select an organization to manage the collaboration:
 Done. TERA is managing this project; donations are tax-deductible.
- Select an Advisory Committee to shepherd the effort:
 Done. A nine member international advisory committee has been formed.
- Committee to work with interested scientists/groups from around the world to form a consensus on range of PFOA/PFOS safe dose: Ongoing. Consensus positions are currently being developed in several areas.

Advisory Committee on International Collaboration for Range of PFOA/S Safe Doses

Lyle Burgoon, Raptor Pharm & Tox, Ltd, USA Harvey Clewell, Ramboll, Global Tony Cox, Cox Associates, USA Michael Dourson, TERA, USA Tamara House-Knight, GHD, Global Ravi Naidu, CRC CARE, Australia Paul Nathanail, LQM, UK James S. Smith, US DoD, USA Nitin Verma, Chitkara University, India

Challenges for Estimating a PFOA Safe Dose

- Different agencies have focused on different critical effects as a basis of their safe dose, recent judgments include immune, hepatic, and developmental effects.
- Some agencies have focused on human observational studies (EFSA, EPA); others focused on definitive experimental animal work (Health Canada, FSANZ). Match the two when possible.
- Study modes of action/AOPs for effects of PFAS other than liver in rodents, particularly for effects, such as immuno-suppression & developmental toxicity (Fenton et al., 2020).

What is Needed for Estimating A PFOA Safe Dose?

- <u>Needed</u>: A consensus on PFOA's critical effect, defined as the first adverse effect or its known, immediate precursor, and its relevant mode of action.
- <u>Needed</u>: Determine a point of departure in which reasonable confidence can be placed to estimate the PFOA safe dose.
- <u>Needed</u>: Affirmation of the existing consensus on the PFOA human half-life, or at least additional urinary clearance studies like Zhang et al. (2013).

The Primary Issue: Risk Characterizations Differ Widely: PFOA*

Agency	EFSA (2020)	EPA (2022)	Health Canada (2018)	FSANZ (2018)
Study	Abraham (2020)	Grandjean et al., (2012)	Perkins et al. (2004)	Lau et al. (2006)
Critical Effect	Immune	Immune	Liver	Fetal
Human Dose (ng/kg-day)	17.5 ng/ml	0.015	521	4900
Uncertainty Factor	1	10	25	30
"Safe" Dose (ng/kg-day)	0.63	0.0015	21	160

Over 100,000-fold difference

* Adapted from Mikkonen et al., 2020

Mission is to support the protection of public health by:

- Developing, reviewing and communicating risk assessment values and analyses;
- Improving risk methods through research; and
- Educating risk assessors, managers, and the public on risk assessment issues
- TERA is a 501c3 nonprofit organization
- Research support for this presentation is from TERA's developmental reserve.

Extra Slides

The Four Stages of a Career

- Novice: learns the basics
- Practitioner: knows the basics and applies them dogmatically; does not know what to exclude
- Artisian: knows the basics and applies them judiciously; excludes obviously irrelevant material
- Expert: knows the basics and applies them with insight and wisdom; excludes all irrelevant material

Adapted from Persky and Robinson, 2017. Moving from Novice to Expertise and Its Implications for Instruction. Am J Pharm Educ. 2017 Nov; 81(9): 6065. doi: 10.5688/ajpe6065

A Problem with Risk Assessment?

- Risk documents: are <u>extraordinarily large</u> with oodles of information that is not relevant for a reasoned judgment
- Peer reviewers: are generally overwhelmed by the size of the risk document and as a result generally focus on a <u>smaller area of knowledge</u>.
- Peer review structure: needs 1/3 expertise in chemical, 1/3 expertise in critical effect and 1/3 expertise in risk assessment; <u>few panels have this</u> mix of expertise.
- Management Oversight: managers need to know risk assessment at least to the artisian level; otherwise they make mistakes in assignment and cannot see what are otherwise (to the expert) non sequiturs.

What Can Companies Do?

- Own your assessment & get it peer reviewed!
 - Why allow an assessment on a chemical of commercial importance by a group of <u>practitioners</u>...
 - And its peer review by a group that is <u>poorly</u> <u>constructed</u>?
- Within the limits of <u>antitrust work collaboratively</u> with colleagues; activist organizations already do this; "hang together or hang separately"
- Resist the temptation to <u>stigmatize</u> your competitors by <u>allowing poor science</u> to go un-addressed.